Solving a system of nonlinear integral equations by an RBF network
نویسندگان
چکیده
In this paper, a novel learning strategy for radial basis function networks (RBFN) is proposed. By adjusting the parameters of the hidden layer, including the RBF centers and widths, the weights of the output layer are adapted by local optimization methods. A new local optimization algorithm based on a combination of the gradient and Newtonmethods is introduced. The efficiency of some local optimization methods to update the weights of RBFN is studied in solving systems of nonlinear integral equations. © 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
A New Strategy for Training RBF Network with Applications to Nonlinear Integral Equations
A new learning strategy is proposed for training of radial basis functions (RBF) network. We apply two different local optimization methods to update the output weights in training process, the gradient method and a combination of the gradient and Newton methods. Numerical results obtained in solving nonlinear integral equations show the excellent performance of the combined gradient method in ...
متن کاملSolving infinite system of nonlinear integral equations by using F-generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
متن کاملSolving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions
In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملA three-step method based on Simpson's 3/8 rule for solving system of nonlinear Volterra integral equations
This paper proposes a three-step method for solving nonlinear Volterra integralequations system. The proposed method convents the system to a (3 × 3)nonlinear block system and then by solving this nonlinear system we ndapproximate solution of nonlinear Volterra integral equations system. To showthe advantages of our method some numerical examples are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 57 شماره
صفحات -
تاریخ انتشار 2009